Equilibrium Constants

Read from Lesson 2: Equilibrium in the Chemistry Tutorial Section, Chapter 14 of The Physics Classroom.

Part b: Equilibrium Constant Expressions

Part c: Calculations of K and Concentration

Law of Chemical Equilibrium

1. Law Overview

• For a reversible reaction at a given temperature:

$$aA + bB \rightleftharpoons cC + dD$$

• The ratio remains constant at equilibrium. Concentrations are raised to the power of their stoichiometric coefficients.

2. The Equilibrium Constant, K

- K or K_{eq} is known as the **equilibrium constant**
- The K value is unique to every reaction and dependent only upon the temperature.
- $K_c = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$

• The K value does not depend on the equilibrium concentrations, but the equilibrium concentrations depend on the K value and the initial concentrations.

3. Writing Equilibrium Expressions (K)

- Place product concentrations in the numerator, reactants in the denominator.
- Use exponents matching coefficients from the balanced equation.
- Multiply concentrations when there are multiple species.
- Include only gases and aqueous solutions; <u>exclude</u> solids and liquids.

4. Types of Equilibrium Constants

- Kc uses molar concentrations (mol/L).
- Kp uses partial pressures for gaseous species: aA (g) + bB (g) ≠ cC (g) + dD(g)

$$\mathbf{K}_{p} = \frac{\mathbf{P}_{C^{c}} \bullet \mathbf{P}_{D^{d}}}{\mathbf{P}_{A^{a}} \bullet \mathbf{P}_{B^{b}}}$$

5. Interpreting K Values

- $K = 1 \rightarrow Products \approx Reactants$
- $K \gg 1 \rightarrow Products favored$
- $K \ll 1 \rightarrow Reactants favored$

6. Equilibrium Language

- "Equilibrium lies to the right" → favors formation of products
- "Equilibrium lies to the left" → favors formation of reactants

Example:

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$
 At equilibria

At equilibrium:
$$[N_2] = 2.67 \text{ M}$$
, $[H_2] = 3.55 \text{ M}$, and $[NH_3] = 10.0 \text{ M}$

$$K_c = \frac{[NH_3]^2}{[N_2] * [H_2]^3}$$

$$K_c = \underbrace{[NH_3]^2}_{[N_2] * [H_2]^3} = \underbrace{(10.0 \text{ M})^2}_{(2.67 \text{ M})*(3.55 \text{ M})^3} = 0.837 \quad \textit{Reactants are favored}$$

$$K_c$$
 for the reverse reaction is $1/Kc$ = $1/0.837 = 1.19$

Kinetics and Equilibrium

Ouestions

For each of the following reactions:

- a. Write the equilibrium constant expression K_{eq} as either K_{c} for concentration or K_{p} for pressure.
- b. Calculate the value of K_{eq} as K_c or K_p for the forward reaction, given the equilibrium concentrations or pressures.
- c. Based on the given equilibrium concentrations or pressures, determine whether the reaction is product-favored, reactant-favored, or approximately balanced (i.e., [products] \approx [reactants]).
- d. Calculate the value of $K_{\text{\tiny c}}$ or $K_{\text{\tiny p}}$ for the reverse reaction.
- 1. $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$

At equilibrium: $[H_2]$ = 0.620 M, $[I_2]$ = 0.350 M, and [HI]= 1.25 M.

2. $2 C_2H_4(g) + 2H_2O(l) \rightleftarrows 2 C_2H_6(g) + O_2(g)$

At equilibrium: P $_{\rm C2H4}$ = 1.51 atm, P $_{\rm C2H6}$ = 1.30 atm, and P $_{\rm O2}$ = 0.750 atm.

3. $Na_2CrO_4(aq) \rightleftharpoons 2Na^+(aq) + CrO_4^{2-}(aq)$

At equilibrium: $[Na_2CrO_4] = 0.0250 \text{ M}, [Na^+] = 1.15 \text{ M},$ and $[CrO_4^{2^-}] = 2.12 \text{ M}.$

4. $5 \text{ CO}(g) + I_2O_5(s) \rightleftarrows I_2(g) + 5 \text{ CO}_2(g)$

At equilibrium: $P_{CO} = 10.5$ atm, $P_{12} = 13.7$ atm, $P_{CO2} = 5.21$ atm.

Kinetics and Equilibrium

5. $4 \text{ NH}_3 (g) + 3 \text{ O}_2 (g) \rightleftharpoons 2 \text{ N}_2 (g) + 6 \text{ H}_2 \text{O}(l)$

At equilibrium: $[NH_3] = 1.25 \text{ M}$, $[O_2] = 2.89 \text{ M}$, $[N_2] = 4.88 \text{ M}$.

6. $N_2O_4(g) \rightleftarrows 2 NO_2(g)$

At equilibrium: $P_{N2O4} = 1.22$ atm, $P_{NO2} = 3.54$ atm.

7 2 NOCl (g) \rightleftarrows 2 NO(g) + Cl₂(g) At equilibrium: [NOCl] = 0.500 M, [NO] = 0.350 M, and [Cl₂]= 0.180 M.

8. $C(s) + H_2O(g) \neq CO(g) + H_2(g)$ At equilibrium: $P_{H2O} = 1.50$ atm, $P_{CO} = 1.22$ atm, $P_{H2} = 1.23$ atm.

9. NH_3 (aq) + $H_2O(l) \rightleftarrows NH_4^+$ (aq) + OH^- (aq) At equilibrium: $[NH_3] = 5.65$ M, $[NH_4] = 0.0100$ M, and $[OH^-] = 0.0100$ M.