Equilibrium: ICE Tables

Read from Lesson 2e: <u>Analyzing Equilibrium Systems</u> in the Chemistry Tutorial Section, Chapter 14 of The Physics Classroom.

ICE Tables

An ICE table is a helpful tool for determining equilibrium concentrations based on initial conditions. The acronym ICE stands for **Initial**, **Change**, and **Equilibrium**, corresponding to the three rows in the table.

- The **Initial** row lists the starting concentrations (or partial pressures) of all reactants and products in the chemical equation.
- The **Change** row shows how these values shift as the system approaches equilibrium, often using variables like x or 2x to represent unknown changes.
- The **Equilibrium** row presents the final concentrations (or partial pressures) after the system has reached equilibrium.

Example: A 1.00 L flask is filled with 1.10 mol H_2 and 1.10 mol Br_2 at a certain temperature. The K_c for the reaction: $H_2(g) + Br_2(g) \rightleftarrows 2$ HBr at this temperature is 36.0. Determine the equilibrium concentrations.

	H_2	+	Br ₂	1	2HBr
Initial	1.10 mol		1.10 mol		0.00
Change	-x		-x		+ 2x
Equilibrium	1.10-x		1.10 -x		2x

$$K = \frac{[HBr]^2}{[H_2] \bullet [Br_2]} = 36.0 \implies 36.0 = \frac{(2x)^2}{(1.10-x)(1.10-x)} \implies \sqrt{36} = \sqrt{\frac{(2x)^2}{(1.10-x)(1.10-x)}}$$

$$6.0 = \frac{2x}{1.10 - x} \implies 6 (1.10 - x) = 2x \implies 6.60 - 6.60x = 2x \implies 6.60 = 8.60x \implies x = 0.767$$

The equilibrium concentrations of H₂ and Br₂ = 1.10 - x = 1.10 - 0.767 = 0.333 mol \rightarrow 0.333 mol /1.00 L = 0.333 M The equilibrium concentrations of HBr = 2x = 2*0.767 = 1.53 mol \rightarrow 1.53 mol/1.00 L = 1.53 M

Questions

1. A 5.0 L sealed flask initially contains 2.50 mol of NOBr gas. The system reaches equilibrium according to the following reaction: $2 \text{ NOBr } (g) \rightleftarrows 2 \text{ NO } (g) + \text{Br}_2(g)$. At equilibrium, the flask contains 1.50 mol of NOBr.

- a. Calculate the equilibrium concentrations of NOBr, NO, and Br₂.
- b. Determine the equilibrium constant, K_c , for the reaction.

Kinetics and Equilibrium

2. A reaction takes place in a sealed flask involving only gases A, B, and C at a constant temperature. The following ICE table summarizes the concentration changes as the system reaches equilibrium.

	A	Br	С
Initial	2.00 M	0.00 M	0.00 M
Change	-1.20 M	+ 1.20 M	+ 0.60 M
Equilibrium	0.80 M	1.20 M	0.60 M

a. Write the balanced chemical	equation for the reaction.
--------------------------------	----------------------------

b. Determine the equilibrium constant, K_{c} , for the reaction.

- 3. A 10.0 L sealed flask initially contains a mixture of 5.00 mol Cl₂ (g), 3.00 mol CO₂ (g), 3.00 mol CCl₄ (g) and 4.00 mol OCl₂ (g). The system reaches equilibrium according to the following reaction: 4 Cl₂(g) + CO₂ (g) ≠ CCl₄ (g) + 2 OCl₂ (g). At equilibrium, the concentration of CCl₄ (g) becomes 0.250 M.
 - a. Calculate the equilibrium concentrations of Cl₂, CO₂, CCl₄, and OCl₂.

b. Determine the equilibrium constant, K_{c} , for the reaction.